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NUMERICAL ANALYSIS OF SEMICONDUCTOR DEVICES

: USING MICROCOMPUTERS

1. INTRODUCTION

The development of semiconductor electronics can be

measured in terms of improvements in device switching

speed, cut-off frequency, geometric dimensions and

complexity. The application of new materials, advances in

2 material preparation and quality, and the creation of new

fabrication technologies have all been necessary to meet

the ever increasing demands of the industry. Today, for

example, Gallium arsenide (GaAs) field effect transistors

(FETs) with O.5 micron gate lengths are commonplace, and

current research efforts are directed toward devices with

even smaller features.

Greater device and material complexity has brought

with it the need for improved analysis procedures. In

many cases, closed form solutions to the often nonlinear

system of equations formulated to represent these devices

are not tractable. Designers have, quite naturally,

* *4* ~~ ... **.* ..... *** n ,_**.. . . . . . . . .
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turned to the use of computers to predict device

characteristics and to gain insight into device physics.

There has grown up an effort in numerical analysis and

device modeling that parallels developments in the rest of

the field.

The problems that this segment of the device community

face include limitations placed on the size and complexity

of devices that can be studied by computer memory size,

machine speed, and cost of computing. Issues such as the

selection of boundary conditions, the convergence of

solutions, their accuracy, nonlinear optimization

strategies and the like must be "alt with on a case by

case basis. The cost of simulati ,ns can be prohibitive or

can limit the ranges of parameters that can be considered.

The purpose of the work reported here is to develop a

low cost modeling technique. The work is directed toward

the use of small computers which normally have severe

memory restrictions relative to the capacity of larger

machines. A further goal is to employ an approach where

the Convergence of the solutions and their accuracy can be

insured. The intention is to provide a user oriented

package that can be readily reconfigured to allow for the

numerical analysis of arbitrary devices. The results of

these efforts are reported here.

One of the earliest use. ' qputers to solve a

semiconductor device problem was the self-consistent

+, "I " :,'q . I' , +| . • • . . '- .' " . .
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iterative scheme for one-dimensional steady-state

calculation reported by Gummel (1)*. Two years later a

transient numerical analysis for solving Gum diode

problems was published by McCumber and Chynoweth (2).

From 1968 to 1973, many papers reported techniques for the

one-dimensional analysis of a variety of devices (3-7).

Among them the work of Hachtel,et. al (6) gives, perhaps,

the most general and efficient analysis for junction

device modeling.

For devices with comparatively simple geometries, such

as bipolar transistors, one-dimensional numerical analysis

might be adequate. However, modern designs involve

devices so complicated that this analysis fails to offer a

sufficient and accurate evaluation of device

characteristics. Therefore, two-dimensional or even

three-dimensional numerical analysis becomes necessary for

device designers. The first two-dimensional solutions

appeared in 1969, reported by Slothoom (8) and Kennedey

and O'Brien (9), separately. Following these, the FET

became a popular device for two-dimensional investigation

(10-19). In 1976, Yamaguchi and Kodera (20) reported a

sucessful treatment to reduce the computing effort by

introducing a regional model.

* The number in parentheses in the text indicate
references in the bibliography.

4
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Up to this point the numerical techniques used in

device simulations were based on the finite difference

method. The physical model used almost universally is the

well known diffusion model which includes Poisson's

equation and the current continuity equation. In other

words, the nature of the problem is to apply a finite

difference scheme to solve the system of nonlinear partial

differential equations as a boundary value problem.

Seqential iteration is applied until the solution

converges.

The finite element method was introduced in device

modeling literature in 1974 (21-27) and now provides an

alternative to the finite difference method for

discretization. Reasons for using the finite element

method include (1) ease in treating irregular geometries,

(2) automatic conservation of current, (3) ease in local

refinement of mesh size, and (4) ease in constructing

higher order approximations. However, this is not to say

that the finite difference method has lost its value in

device modeling. Rather, with its simplicity and

reliability, this method is still useful in most cases.

A common assumption made by many authors is that the

device under consideration can be described by a

two-dimensional model. This is generally true and the

result is adequate for engineering purposes. However for

those devices where the cross-section cannot be taken
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uniform over the entire third dimension, three-dimensional

analysis becomes a necessity. Up to the present time,

this kind of treatment is rare in the literature (28).

Recently, a program named FIELDAY, developed by IBM, was

reported (26). This program simulates semiconductor

devices of arbitrary shape in one, two or three dimensions

operating under transient or steady-state conditions.

Also, this program enables users to rapidly generate new

models and analyze the results. It is believed to be the

most general and efficient algorithm for device design

purposes at the present time.

Computer storage requirements and processing costs

have restricted computer-aided design activity to those

institutions capable of bearing the expense. However the

recent introduction of personal computers has made it

feasible to do certain classes of device simulations very

cost effectively. To achieve this purpose, a simulation

technique must be found that fits with the comparatively

small CPU memory space available for calculation. A newly

developed modified decoupled method has been successful in

satisfying this requirement. Based on this, a user

oriented program suitable for the simulation of

metal-semiconductor devices has been developed and is

reported here. The approach can be applied to any

semiconductor device.

"'-" '" , " -';: ;"" ; ,'_" . '? " < _ ,- .':.;- , ? .' . .. ; " . -; ; • • _. " _. _ _--.------"--_
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In this algorithm, a five point finite difference

scheme was chosen for simplicity. It can be shown that

the finite element method can also be applied equally

well. The Newton-Raphson iteration scheme combined with a

direct matrix solution technique will always yield a

converged result, especially for diagonally dominant

matrix systems of the type encountered here. Of course,

there are some natural limitations which dominate the

accuracy of the result and the device area that can be

simulated, such as the round-off error, the mesh Debye

length limitation, the size of the memory available, the

accuracy of boundary values, and so on.

An additional purpose of this work is to develop a

new family of devices, namely the geometrically controlled

metal-semiconductor diode. With the aid of the program

mentioned above, two new types of diodes have been

investigated.

1.1 NUMERICAL ANALYSIS (29)

The diffusion model is generally accepted in device

modeling and requires no further discussion. To obtain a

solution, Poission's equation, the current equation, and

the continuity equation are solved together numerically,

subject to the appropriate boundary conditions. In this

work, for simplicity, generation and recombination

processes are neglected. Likewise, the formulation is

restricted to a static analysis and so the time dependent
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* terms are also omitted. Therefore, the continuity

equation can be combined with the current equation,

thereby reducing the problem statement to two equations in

two unknowns; the potential and carrier concentration at

each point in the device.

There are three steps used in numerical analysis: (1)

discretization, (2) solution and (3) iteration.

Discretization describes the process of converting a

continuum problem into its discrete version (30). For

this purpose, either the finite difference or finite

element method can be chosen. In either case, two sets of

nonlinear algebraic equations result after discretization,

one from Poisson's equation, the other one from the

current equation. Step two is to solve the above equation

sets. Two different methods are accepted, the coupled

* method and the decoupled method. With the coupled method

the two sets of equations are solved simultaneously. In

the decoupled method they are solved serially. For

iteration, either the direct iteration or the

Newton-Raphson method is available. This will be discussed

further in chapter 3.

The advantages and disadvantages of the finite

difference and finite element methods have been metioned

previously. In this work, the finite difference method has

been chosen to simplify the programing work and to allowr more attention to be paid to developing a new approach to
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be described later. The coupled method requires

approximately 4 to 9 times the amount of memory needed by

the decoupled method, for unipolar and bipolar devices,

respectively, and is good for strongly nonlinear types of

problems. The decoupled method, which solves weakly

nonlinear problems sucessfully, is the most widely used

approach. Direct iteration is simple but has only a

first-order rate of convergence, while the Newton-Raphson

method requires a more complicated procedure but promises

second-order cnvergence. Since numerical analysis using a

minicomputer is emphasized in this work, special

accomodation is needed for the limited memory space

*" available. Considering the massive memory required by the

coupled method, we have rejected it in favor of the

decoupled method. However, with this method, convergence

-is not guaranteed.

In chapter 3, a new treatment to manipulate and solve

this problem is reported, called the modified decoupled

method. This method employs the Newton-Raphson technique

and so it is suitable for solving weakly or strongly

nonlinear problems. The results are as good as those

obtained using the coupled method.

In the numerical analysis of semiconductor devices

there are some additional matters to be considered. Since

device simulation is, basically, the solution to a

boundary value problem, the accuracy of the boundary
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values used, such as carrier concentration and potential

at the contacts, directly affects the accuracy of the

results. Unfortunately, precise boundary conditions are

* not well understood yet. For example, the exact carrier

concentration at a Schottky-barrier contact is not known.

Therefore, contact problems need to be studied in more

detail. The same argument can be applied to the assumed

carrier velocity-electric field and diffusion

coefficient-electric field relations which depend on the

semiconductors used.

Mesh spacing is another factor which affects the

accuracy of the numerical results, It will be shown in

chapter 3 that, in general, the Debye length restriction

is a good reference to guarantee convergence.

Once the problem has been formulated, reasonable

boundary conditions defined, computer programming

completed and numerical solutions obtained, one is faced

-- with the task of verifying the validity of the results.

There are three means available to the device designer to

check the self-consistency of the results of the

simulation.

A-
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1. Conservation of current: The current into the device

should be equal to the current out of the device.

2. Comparison with the one-dimensional result:

Sometimes one-dimensional results are well known

analytically and/or phsically. These are good

references for comparison.

3. Symmetry: With symmetrical or antisymmetrical

geometries the results should conserve the

corresponding symmetry properties which can be

used as a reference as to the self-consistency of

the solution.

1.2 APPLICATIONS IN SDMICOUDUCTOR DEVICES

In this work, a two-dimensional self-consistent

computer program has been written for a 64K-byte HP 9825B

desktop calculator to investigate the electrical

properties of devices with arbitrary contact

configurations and general boundary conditions. It has

been applied to two new types of devices which show

promise as microwave and/or millimeter-wave, (m-wave),

devices.

GAs, Schottky-barrier diodes (SBDs) are widely used

in microwave and mm-wave applications such as detectors,

mixers, limiters and multipliers. Especially for mm-wave

applications, usable devices require a low noise figure,

low parasitic spreading resistance and low barrier

capacitance. GaAs is a material which lends itself to

-7.-" -.
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meeting all theme requirements (31). The one-dimensional

behavior of metal-semiconductor rectifier systems, i.e.

Schottky-barriers are well understood. However in many

devices, such as the metal-semiconductor field effect

transistor (MESFET), the contact geometries are

distributed and so a two-dimensional model for the device

is needed. Moreover, a model for GaAs devices must

accomodate nonlinear material properties, such as

field-dependent velocity and the diffusion. Although it

may be possible to formulate the general problem

analytically, the solution of the resultant nonlinear set

of equations can best be obtained numerically.

Mixer diodes employing Schottky-barrier contacts are

found to be particularly useful in high resolution radar,

microwave comounications, and radio astronomy. Typically

their cutoff frequencies are in the range of 400 to 1000

GHz. Some of these diodes, such as beam leaded ones, can
.1

go beyond 1000 GHz (32). In most of the cases, low

turn-on voltage is desired to increase detector

sensitivities in some laboratory test equipment and

especially in systems where local oscillator power is

limited (33). Here, the turn-on voltage is defined as the

applied voltage needed to obtain a particular forward

current, for example 1 vA (Figure 1.1). The turn-on

voltage is closely related to the barrier height of the

rectifying system. For low turn-on voltage, low barrier

ILP
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height is required. Under regular fabrication procedures,

for a given Schottky metal and a particular semiconductor

material, the barrier height should be a fixed value.

However the number of choices for the metal is limited by

technical considerations. Some barrier height lowering

techniques can be applied to meet this requirement, such

as high temperature processing (34), interlayer charge

control using ion implantation (35), and the planar doped

barrier (36).

The work presented here reports a new method to

control the turn-on voltage of rectifying contacts using

conventional Schottky metal barriers on arbitrary

semiconductors. This new approach involves including the

. contact geometry as part of the design. This method has

been proven to be simple, effective and can be achieved at

low cost.

1.2.1. Gap Controlled Metal-Semiconductor Diode

The first device under consideration is called the Gap

diode. Its current-voltage characteristic is controlled by

a geometric gap between adjacent Schottky barrier regions

at the blocking contact on one side of the diode.

Physically, it can be expected that the effective barrier

height of the Gap diode can be adjusted to any desired

value between zero and the characteristic barrier height

of the Schottky metal on the semiconductor material. This

means that the applied voltage required to turn on the
I
o



-14-

diode is adjustable simply by changing the width of the

gap. This device has been demonstrated experimentally.

Striking similarity between the predicted and experimental

I-V curves was observed (37).

1.2.2. Antisymmetric Metal-Semiconductor Diode

The second new device under investigation is called

the Antisymmetic diode. Just as the Gap diode is a

modified version of the Schottky-barrier diode, the

Antisynmetric diode is a modified version of an

antiparallel SBD pair. It has been shown (38) that the

antiparallel SBD pair can be pumped subharmonically at one

half of the local oscillator frequency and can be used as

a subharmonic mixer. In microwave and n-wave frequency

" applications, this has several advantages including

relaxed requirements on the local oscillator frequency and

power, a reduced noise figure and an improved burn-out

rating. However two disadvantages of this structure are

the difficulty in fabricating a completely balanced diode

pair including the necessary circuit and contact, and

secondly the turn-on voltage is not adjustable. The

antisymmetric diode described here is one approach to

solve these problems.

1.3 SCOPE OF THIS STUDY

The main purposes of this study are to develop a

computer-aided analysis for two-dimensional metal-

semiconductor devices, and to use it to design new types
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of microwave and m-wave devices. In Chapter 2

one-dimensional metal-semicondutor physics is reviewed

with emphasis on the depletion approximation and

deviations from the ideal case. Chapter 3 describes

computer-aided simulation techniques for one and two

dimensions. A modified decoupled method is developed for

the solution of coupled nonlinear equations suitable for

use on small computers. Some technical problems are

discussed, such as boundary values, mesh sizes, and so on.

A one-dimensional example of a Schottky-barrier junction

is presented and the results compared with those of the

* one-dimensional depletion approximation.

The analysis method is applied to a new microwave

diode called the Gap diode. Chapter 4 presents the

results of the simulation and compares them to

experimental results. Chapter 5 reports another new

diode, the antisymmetric diode which is another potential

microwave and m-wave device. Theoretical results are

presented.

0:?
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2. ONE-DIMENSIONAL METAL-SEMICONDUCTOR DIODE ANALYSIS

2.1 INTRODUCTION (39)

In this chapter, the characteristics of the one-

dimensional metal-semiconductor diode are discussed in

order to develop a basic understanding about the diode and

to provide background for two-dimensional analysis.

Metal-semiconductor contacts are also called

Schottky-barrier contacts. In the area under the Schottky

metal contact, there exists a region almost depleted of

free carriers compared to the concentration of electrons

supplied by donor atoms. An electric field exists in this

depletion region supported by the fixed charge of the

ionized immobile donors. The extent of the depleted

region, W, under zero bias is called the depletion length.

Figure 2.1 (a) shows an n-type semiconductor diode

comprising a Schottky metal contact and an ohmic contact

applied to the semiconductor. The band diagram and the

electron current component corresponding to forward, zero

and reverse bias cases are shown in Figure 2.1 (b), (c)

and (d), respectively. Here the diode length, L, (the

length of the bulk region), is assumed to be greater than

the depletion length, Wo . An ideal ohmic contact is

defined as a thermal equilibrium contact without a

potential barrier and with an infinite surface

recombination velocity (40). The potential difference

.
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between the Schottky metal contact and the edge of the

depletion region, denoted by Vo , is called the contact

potential, built-in potential, or diffusion potential. In

Figure 2.1, the barrier height *b is the difference

between the Schottky metal work function and the electron

affinity of the semiconductor. Vf and Vr are the

magnitudes of the forward and reverse bias voltages,

respectively. The elecron current from the semiconductor

to the Schottky metal contact is denoted by Js and that

from Schottky metal contact to semiconductor is denoted by

Jms • The barrier height as seen from the metal side

stays the same over a wide range of applied voltages, V,

between Vo and reverse breakdown voltage. So Jms remains

constant. On the other side, Jsm which is the current

density from the semiconductor to the metal must equal

Jms when no bias is applied. This is shown in Figure 2.1

(c). The forward bias voltage Vf decreases the

diffusion potential and allows electrons to surmount the

barrier from the semiconductor to the metal, so that

J increases. The reverse bias voltage Vr increases

the diffusion potential and decreases the number of

electrons able to surmount the barrier from the

semiconductor to the metal, so that Jsm decreases. For

large Vr Jsm will come close to zero. In this

case, Jms can be understood to be the saturation current

density.



-19-

There are two mechanisms for charge transport over the

potential barrier of Figure 2.1. If electrons have enough

thermal energy to surmount the barrier then according to

thermionic-emission theory (39), the total current.

density, Jn , is related to the applied voltage, V, by

in = A *T2exp(-qV0 /kT) [exp(qV/kT)-l] (2.1)

where A* = 120 (m* /m) Amp cm-2 K- 2 , for which m /m is

the ratio of semiconductor effective mass to free electron

mass. For GaAs, this ratio is 0.072 (39). The

temperature is in degrees Kelvin. According to diffusion

theory (39,41), the total current can be written as

n= qNdPn Emax e x p [-qVo /kT)(exp(qV/kT)-i] (2.2)

where q is electronic- charge, Nd is the doping

concentration of the bulk region, P is the clectron

mobility, and Emax is the field strength at the Schottky

contact. These two completely different mechanisms

predict similar results and both are accepted. In fact,

it is possible to make SBDs in which the I-V curves are

very close to these predictions, especially in the forward

bias case (39). However, effects such as

quantum-mechanical tunnelling through the barrier and hot

electrons, to name a few, cause departures from the
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aforementioned ideal results. This will be explained

later.

In the practical case, under forward bias, the I-V

curve increases exponentially as theory predicts.

Usually, significant current conduction will be detected

beyond the turn-on voltage which is very close to the

built-in voltage. On the other hand, under reverse bias,

the I-V curve of the real case is not so close to the

predicted results. In fact the reverse current increases

with the voltage. Eventually the avalanche breakdown

process will dominate and this results in a sharply
increasing current when V approaches -VBD . This will be

dissussed later. A typical I-V curve for SBD is shown in

Figure 2.2.

2.2 ONE-DIMENSIONAL APPROXIMATION

The usual treatment of the metal-semiconductor

junction considers a one-dimensional configuration in

which the contact metal is infinite in extent. The

potential distribution in the bulk semiconductor region

can be calculated from Poisson's equation using a suitable

approximation called the depletion approximation.

The potential and the field distribution are described

in one-dimension by Poisson's equation:

- (n-Nd) (2.3)
iw C d
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Figure 2.2 A typical I-V relation for a Schottky-barrier
diode. V0 denotes the built-in voltage andV

the reverse (avalanche) breakdown voltage.
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A voltage V is applied to the diode shown in Figure 2.3.

If at x = 0, the potential is zero, then the potential at

W will be Vo - V, due to the definition of W. Beyond the

depletion edge x = W, i.e. outside the depletion region,

the field is very close to zero, since here the electron

density, n, is 8o close to Nd that the right hand side of

equation 2.3 is effectively zero, and the potential is

constant. Inside the depletion region, n is so small that

its value can be neglected, and the field intensity

increases linearly from zero at the edge of depletion

region to a maximum value at the Schottky metal contact.

The potential here can be described by a quadratic

function of x. This is a good approximation, since for

the electrons to climb the potential barrier, q (Vo - V),

the value of (n - Nd) must change drastically in a very

short distance around the depletion edge.

Explicitly, the boundary conditions are

Potential:

0 for x-0

V 0 -V for W<x <L

(2.4)
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carrier concentration :

n 0 for 0 < x < W

n N d  for W < x < L

Inside and outside the depleted region equation 2.3

becomes:

0 W< X< L

Using the following relation as a boundary condition

x" 0 W < x < L (2.6)

yields

- -Nd(x-W) 0 < x < W (2.7)

and so

- - 1 2 - Wx)
N d(T x )

0< x <W (2.8)

.... . . . . . . . . . . . . . . . . . . .
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In order to satisfy the boundary condition at x = W, the

value of W should be

W".[ 2c(Vo-V)] 1/2W q Nd (2.9)

Equation 2.7 shows that the field strength, E = - d* / dx,

at x = 0, i.e. the surface of semiconductor, is maximum,

1/2[2qNdVO-v)]

2 (V0 -V) (2.10)

w

and decreases linearly in x to a minimum value zero at x =

W. The direction of the field is from the semiconductor

to the metal. The total charge in the depletion region is

Q E EmaxA - qNdWA (2.11)

and the junction capacitance is

d:.

C - , E A (2.12)

where A is the diode area.

2.3 CURRENT-VOLTAGE MODEL

As mentioned previously, there are two approaches to

describe the I-V relation of a Schottky diode, i.e. the

thermionic-emission and the diffusion model. Since the
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diffusion model can be generalized and applied to a

two-disomnsional structure, a detailed study of it is

" worthwhile. The thermionic-emission model is omitted

here.

The expression for current in term of drift and

diffusion component is

dnJ - qnpnE + qD - (2.13)
n n axi

where positive J means in the positive x direction, D.

is the diffusion coefficient for electrons and is taken

independent of position. The problem is to find an

expression for Jn in terms of the applied voltage V.

Before starting to calculate the current, it should be

noted that the diffusion model is based on the following

assumptions:

1. The current through the barrier is due to the

combined effects of drift and diffusion in the

*i depletion region.

2. The barrier height is much greater than kT/q.

3. The carrier concentrations at x = 0 and W are

unaffected by the forward bias voltage.

The simplest expression relating Dn  and un is the

Einstein relationship.

!w
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Since the static case is assumed, din /dx = 0, and Jn is

a constant. Rewriting equation 2.13 by adding a factor

exp(- qp /kt), together with equation 2.14, gives

Jn exp(-q*/kT) D d En exp(-q*/kT) (2.15)

When V 0, there is no current(J = 0 ).At x W, the

potential is the built-in value, = Vo and n = Nd ; at

x = 0, p = 0, and n = n(0). So from equation 2.15 one

obtains,

n(0) = Nd exp (-qVo/kT) (2.16)

From assumption 3, equation 2.16 will be applied in all

cases. With the aid of equations 2.8, 2.9, 2.10, and
integrating with respect to x from 0 to W, yields equation

-. 2.2.

2.4 EXACT ANALYSIS

, Instead of the depletion approximation, sometimes an

exact analysis is desired, especially for the

two-dimensional case. The charge density and potential

are related by Poisson's equation. See equation 2.3. The

current density, in terms of drift and diffusion, is

described in equation 2.13. If the Einstein relationship

*is assumed, a simple expression for the field at the

contact, i.e. Emax , can be found.
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If Jn 0, such as is obtained for a bias voltage

less than the turn-on voltage, or in reverse bias,

equation 2.13 can be rwritten as

d
"o[n exp(-q*/kT)I s 0 (2.17)

Integrating and applying the boundary condition at x =L,

n = N , where the potential is Vo - V, one obtains

N Cx) u Nd exp[- T (-*+Vo-V)l (2.18)

Substituting n(x) in Poisson's equation, one obtains,

after some manipulation,

d,2 2qNd d 2.9
-. exp[- (*-Vo+V)]-11  x (2.1.9

Integrate this equation from x = 0 to L to get

S2 2 2qNd kT (2.20)
x-O x-L q 0

For a Schottky diode in which the length of the

usemiconductor is much greater than the depletion length,

i.e. L >> W

pd n x 0 (2.21)
x 

.'-L
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the value of Zmax will be

'. . 1/2

-(i. Emax [ x-O I (Vo-V- )1 (2.22

Comparing this with the expression for Emax derived from

the depletion approximation, equation 2.10, the only

difference is the term kT/q. However, from assumption 2,

kT/q < < Vo, so E in both cases is identical, when

equation 2.21 holds.

Even in the one-dimensional case, closed form

solutions for n and 4) are not attainable, because of the

nonlinear nature of equation 2.19. On the other hand the

depletion approximation is accurate enough for most

practical purposes. For the potential, the difference in

results is negligible; for the electron charge

concentration, however, the exact n(x) is a smoothly

varying function that rises from 10 % of N4  to 90 %

around the depletion edge x z W, rather than jumping

discontinuously from 0 to Nd at x = W for the depletion

approximation. The corresponding potential change is less

than 2kT/q. Also the electron concentration at x - W is

about 50 % of Nd in the exact case. (See Figure 2.3, and

for further detail see Chapter 3 for a one-dimensional

simulation)
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2.5 PRACTICAL METAL-SEMICONDUCTOR DIODE

The Schottky diode discussed above is an ideal one.

In this section several practical departures from ideality

are discussed.

2.5.1 Image Force

When an electron moves from the semiconductor to the

," Schottky metal, an image force exists which affects the

electron motion. This force lowers the potential barrier

by an amount (39,40)

= 2xm Emax (2.23)

S a 11/2 (2.24)
MM =[ max

where xm is the distance to the peak of the barrier from

the Schottky contact. If the doping concentration is Nd

Z 1017cm-3, then under zero bias Ema x  is of the order of

106 V/cm, xm is of the order of 10 A*, and AOb is less

than 0.05 volt. This estimation suggests that the image

force effect can be neglected in diode simulations if the

doping concentration is not too high.

.
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2.5.2 Ideality Factor

The current-voltage relationships described by

equations 2.1 and 2.2 are for the ideal case. In

practice, no I-V characteristics exactly obeying these

equations have been observed. An ideality factor n is

usually included in the I-V relation to match the theory

to experimental results.

Jn JO exp(-qVo/kT) exp(qV/nkT) [l-exp(-qV/kT)]
(2.25)

where Jo is A* T2 or qNp E and usually 1 < n < 1.2.

There are several means by which to explain the factor n

added here, including a voltage dependent barrier height,

interfacial layer effects, temperature effects and so

forth. (For further information see (39))

2.5.3 Tunnelling

In reverse bias, if the potential barrier becomes thin

enough, significant tunnelling of electrons from the metal

to the semiconductor might take place. Also at high doping
19 -3

concentrations, say of the order of 10 cm or more,

this phenomenon might be observed. In this work, since

comparatively low doping concentrations are used and high

reverse bias cases are not of interest, the tunnelling

effect is neglected in the simulations. For reference,

w see (39).
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2.5.4 Interfacial Layer

In the manufacturing of SBDs it is not easy to remove

the thin oxide layer often present between the metal and

the semiconductor. Such an interfacial layer lowers the

barrier height and gives some series resistance to the

current, so that the I-V relationship departs from the

ideal case. Thus the ideality factor will change also.

Since the thickness of the interfacial layer might be of
0the order of 10 A to simplify the simulations in

two-dimensional structure, this possibility is omitted.

2.5.5 Reverse Characteristics

According to thermionic-emission theory (39), in

reverse bias, the current saturates at a constant value

Ssat = AT2 exp(-qVo/kT) (2.26)

However in the real caset such an ideal phenomenon is not

seen. In fact, the current increases gradually with

voltage. There are several reasons which contribute to

this, including the voltage dependency of the barrier

height, the effect of tunnelling, the edge effect, the

image force, the carrier generation in the depletion

region, and so forth. Although the diffusion theory

predicts an increasing reverse current, it needs some

modification to achieve a closer prediction to

experimental results.
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When a high reverse bias voltage is applied, the

reverse current may grow rapidly. This sort of breakdown

phonomenon can result from two different mechanisms. The

first one is called Zener breakdown, which operates at

lower voltages; The second one is called avalanche

breakdown, which operates at higher voltages, beyond the

Zener breakdown. Zener breakdown can be thought of as a

"soft breakdown" which is due to field ionization and

tunnelling. Usually such a breakdown phenomenon occurs in

those diodes with heavy doping and under low reverse bias

voltages. The typical electric field is of the order of

106 V/cm. (39,42) The avalanche breakdown mechanism

involves carrier ionization and multiplication with high

reverse bias voltages. (39,42)

2.5.6 Field Dependent Electron Velocity And

Diffision Coefficient - Hot Electron Effects

In equation 2.13 the current is divided into two

terms. The first is the drift current qnunE, where pnE is

the electron velocity Vn

Vn = nE  (2.27)

The second term is the diffusion current qDndn/dx.

In GaAs, under high fields, the electron velocity, Vn,

is a nonlinear function of the field (43). According to

Thim (44), an analytic approximation for the

, ' '.. .. ." ' " . . .. . . . .",
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velocity-field relationship is

E4 4

V + [(2E.28)(Vn nE s EoE]/[l + (Eo) ] (2.28)
0 0

where Vs is the saturation velocity, Eo is the threshold

field. Here the temperature dependent relation has been

omitted and room temperature is assumed. For further

detail see (43). When the field is low, equation 2.28

reduces to equation 2.27. At very high fields, the

velocity saturates at a value Vs.

Diffusion in GaAs does not obey the usual Einstein

relation. However it is possible to modify it by

including an effective energy relaxation time in the

diffusion coefficient (45).

kT Vn (E) 2 2D (E) -q _ V n(E) (2.29)

Here T is the energy relaxation time, of the order

of 10-13sec. for GaAs. When the field is low, the second

term on the right hand side is negligible and equation

2.29 becomes the Einstein relation.

For small devices whose active region length is less

than one micron, electron transport behavior is different

from the discussion above. Since relaxation time

processes for energy, charge and momentum are comparable

with the transit time, the velocity never saturates, but
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rather increases with the field (46). Generally speaking,

the velocity is a function of position, time and the

properties of the external load, as well as the field.

The diffusion coefficient might have a similar problem.

Hot electron effects have to be taken into account in the

simulations presented here to achieve a result closer to

reality.

With this as background, we turn now to developing the

numerical techniques needed to solve the transport

equations.

S-
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3. COMPUTER-AIDED DEVICE SIMULATION

This chapter describes computer-aided semiconductor

device simulation techniques and presents a modified

decoupled solution method using a microcomputer. The

one-dimensional case is studied first. The results are

evaluated and then the method is extended to two-

dimensional configurations.

3.1 PHYSICAL MODEL

For simplicity, an n-doped majority carrier device is

assumed, such as a MESFET, Schottky diode, etc.. The

characteristics are dominated by Poisson's equations and

the electron current equation:

V2 =. (n-Nd (3.1)

J /q = nvn + D Vn (3.2)

n n

all of the quantities were defined in the previous

chapter. For the one-dimensional case equations 3.1 and

3.2 are the same as equations 2.3 and 2.13. In this study

only one and two-dimensional behavior are considered. In

the two-dimensional case, the parameters Jn, vn and Vn

are vectors having components along the x and y

directions; V can also be written as

.. ..
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V2 a2 + a2v (3.3)

T2

The static current constraint

V.5 - 0 (3.4)
n

is also needed to solve the system. As a matter of fact,

equation 3.2 can be combined with equation 3.4 to remove

the unknown current in:

0 - V.(nVn + DnVn) (3.5)

At the contacts and the edges of the device, the boundary

values must be specified as mentioned in Chapter 2.

3.2 NUMERICAL METHODS

The finite difference method was the first to be used

in device simulations. Five point formulas using

rectangular meshes give the famous centered difference

approximation. In order to solve tie resultant system of

equations efficiently, variable mesh sizes are considered.

This has been discussed by Adler (47). In many devices,

two- dimensional behavior is restricted only to a small

part of the device. By separating the entire device into

appropriate portions depending on their behavior, and

defining suitable grid patterns, much computer memory and

. . .
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computation time can be saved. In Adler's paper, a method

which allows terminating mesh lines in finite difference

simulation was reported. This idea is close to the spirit

of the finite element method.

Linear piecewise polynomial functions applied on

triangular meshes provide the simplest type of finite

element formulation. For more accurate results, the

hermite bicubic function method is a better choice (24).

However this method needs more boundary conditions and

more computer memory than the finite difference approach

and might not be appropriate for small computer

simulations. In fact, the finite element method takes

more effort in programming than does the finite difference

method. If the geometry is not too complicated and a

degree of approximation can be tolerated, the finite

difference method should be adquate for the purpose of

semiconductor device modeling.

3.2.1 Techniques Of Simulation - Modified Decoupled Method

As mentioned before, the finite difference method has

been elected for simulation. The first step is to

discretize the device by generating mesh lines over the

entire active region under consideration. An example is

shown in Figure 3.1, in which the node numbering system is

also included. Mesh lines can be either uniform or

nonuniform depending on physical and geometrical

considerations. The numbering system specifies the
., , 

•
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boundary nodes in negative numbers and the nodes inside

the semicoductor in positive numbers. Values of the

71 variables at the boundary nodes, such as those on ohmic

and Schottky contacts, must be specified. At noncontact

* -iboundaries, the normal components of the current and

* electric field strength are all equal to zero. However,

nodes on those surfaces are positively numbered and must

be taken into account in calculation because there are

unknown variables there as well as at the nodes inside

the semiconductor. Surface charge density can also be

used as a boundary condition on noncontact boundaries.

For each positive node i, Poisson's equation has a

corresponding discrete version. For example : in Figure

3.1, if the adjacent nodes of i are i+l, i-l, i+10 and

i-10 and all are equi-distant to i, then can be

represented by

[1 -
- (Vi+l+Vi-2Vi) + (V +V -2Vi)

d i+10 i-1O- i

and n simply by N.. Here V.and N. are the space-charge

potential and electron mobile charge concentration at node

i, respectively. Therefore, for each node i, there is a

discrete expression for Poisson's equation with 6 node

variables: 5 for potential and 1 for charge concentration.

This is valid for most of the nodes inside theK semiconductor. For those nodes next to the contact,

.. . . . ..
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however, one of the node potential variables is known, so

the total number of variables is 5. Obviously, each node

on a noncontact boundary has fewer variables than those

inside the semiconductor. Similarly for each node i, a

discrete current continuity equation (equation 3.5) can be

derived.

With suitable manipulation, the entire family of

Poisson's equations, after discretization, can be

expressed in matrix form as equation 3.6 and the current

continuity equation as equation 3.7. Note that the total

number of equations resulting from the discretization of

equation 3.6 and 3.7 is equal to the total number of nodes

inside semiconductor. For example, the number is 170 in

Figure 3.1.

AV =i BN + C

P N

Here V is a column vector [V1 , ...... ,V1 It representing the
tt

potential at each node and N = [N1 ,...... ,NL]t is the

electron concentration at each node. The integer Z

represents the total number of nodes inside theF:; semiconductor. A, B are L x t constant matrices, C,

are constant t-column vectors, P is an Z x Z matrix and

a function of potential. Note that the current J has
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been removed by equation 3.4. Now the variables are and

N. But instead of solving for V and N simultaneously, in

equation 3.6, V is treated as an independent variable, and

N as a dependent variable with respect to V, so, as a

matter of fact, equation 3.6 is solved in every iteration

loop with equation 3.7 as an auxiliary function.

The Newton-Raphson method (30) starts from a truncated

Taylor's expression. Concentrating on equation 3.6, after

some manipulation it becomes:

(A~i+l BNi+lC) =(A1i-BRi-C) + A-B[N]i i  0

- -" -i l ii-" (3.8)

V v +A~ (3.9)

where i l 1, 2, 3, ...... represents the index of
dN

iterations. The quantity [-v I  is an t x t tangential
dV

matrix or Jacobian matrix (30) :

N1 aN1

T. .....

L 1 tV

*. . .
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can be evaluated from equation 3.8 with th result

!I dVA[ (AVs-BN -C) (3.10)

dyE

In the above equation two terms are still unknown, that is

dN -[-1 and i
dV

These values can be found from equation 3.7:

Q-1 J (3.11)
(V)

and also by differentiating it with respect to V,

d (P _ N)] = 0 (3.12)

dV (V)

The left hand side of equation 3.12 can be separated into

two terms,

w

p []+ E Yjk. 0 (3.13)
(V) dV j,k-i

4 1 ah4
where = nm) hj., vk  and nm

rn-i 8V

"U

U-2
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are elements of P , V and i respectively. Equation

3.13 may be rearranged to read:

dP - l y l( . 4
dV (V) [ j,k=l

. -"

This completes the evaluation of AV for equation 3.10.

From equation 3.9, ci~l can be calculated and equations

3.9 and 3.10 are ready for next iteration loop i+1.

To start the calculation, the initial V value is

arbitrarily given, say q= V0 [0 ...... to] . From

equation 3.7, N can be obtained, say N0 which is used in

the right hand side of equation 3.6. Then equation 3.6

can be solved directly in terms of V. This V is used as V1

and the aforementioned iteration procedure starts.

Usually it takes 3 to 6 iterations to obtain a converged

iolution for V. The solution of IN follows through

equation 3.11.

The numerical approach described above can be

* summarized as follows : Eliminate N in equation 3.6 by

equation 3.11 and obtain

AV B(P] 1  + (3.15)
(V)

This is a system of equations with variable V only.

Theoretically it is possible to solve such nonlinear

system using the Newton-Raphson method directly. However,
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difficulties arise from manipulation of the inverse term

on the right hand side of equation 3.15. This explains

why it takes so many steps to process.

From the description above it is evident that the

largest memory space occupied by one term is an t x Z

matrix storage. Since there is only one such matrix

needed for processing at any one time, all of those terms

not in use can be stored on disk. For manipulation of

equation 3.14, there are two t x t matrix multiplications.

Since each matrix may occupy more than 85 % of total CPU

memory space, one of them should be stored on the disc,

and the matrix operation done column by column.

3.3 COMMENTS

In this section some practical considerations about

this simulation are disscussed.

3.3.1 Boundary Conditions

It is necessary to consider the boundary conditions

when the simulation is carried out. At ohmic contacts,

usually the ideal case is assumed, i.e. the carrier

concentration is equal to the doping concentration of the

adjacent semiconductor. At the Schottky contacts, in the

forward bias case the carrier concentration is assumed to

be given by equation 2.16. In reverse bias, at the

Schottky contacts, since the effective built-in potential

becomes Vo + Vr the following expression is more suitable
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n nN exp [- ( +VE)] (3.16)
d r

Here, Vr is the magnitude of the reverse bias voltage.

Also at the edges of the device, it is assumed that the

first order partial derivatives of both carrier

concentration and space-charge potential in the normal

direction are zero.

3.3.2 Current Continuity Equation

For static simulations, the unknown current is

eliminated by combining equations 3.2 and 3.4 to obtain

equation 3.5. This makes the equation a second order

partial differential equation as well as a Poisson's

equation. So, in fact, two sets of boundary values are

S"required for simulations.

If the maximum field everywhere in the device is low,

the Einstein relationship holds, and the simulation is

straightforward. If, however, the field is high enough to

drive carriers into the nonlinear parts of the

velocity-field curve and the diffusion-field curve for a

significant part of the carrier's trajectory, (in case of

GaAs, see section 2.4.6), th--e are two choices:
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1. Equations 2.16 and 3.16 are still used, due to lack

of better boundary conditions available.

2. Solve Poisson's equation and the continuity equation

numerically, in one dimension, taking hot electron

effects and the value of the current, i.e. equation

2.2, into account, to obtain the carrier

concentration at the Schottky contact for each

applied voltage.

The first choice is simple but, in two-dimensional

simulations, the total current calculated would be

unreasonable under certain conditions. However, in

two-dimensional simulation of MESFETs for example, usually

the metal gate is reverse biased, and negligible current

is carried by the gate. So equation 3.16 and zero current

density are both assumed without loss of generality (20).

The second choice might be good for fine meshes, However,

the memory capacity of the small computer used here limits

the smallest mesh size, and so in some cases unreasonable

carrier concentrations at the Schottky contact are

obtained.

3.3.3 Program And Flow Chart

Since one wants to reserve most of the computer memory

for matrix operations, the program is separated into

several subprograms. All the data not in use are stored

on disk. Some matrix variables and array variables can

represent different items at different times to minimize
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the number of variables required. Caution must be

exercised in programming equation 3.10, especially in

calculating the Jacobian matrix as in equation 3.14, to

prevent some error in differentiating each element.

Information regarding each node or element is stored

on the disk, including the adjacent node or element

number, the distance between each of the nodes and some

identification to distinguish between nodes inside the

active region and those on the boundary. The boundary

values can be adjusted automatically in the main program

for each applied bias. So the program can be used to

simulate different structures if the input information is

properly assigned.

To start the simulation, the value of the space charge

potential at each node is assumed under the zero bias

condition. Since the current is zero in this case, one

can solve for the carrier concentration from current

continuity and carry out an iteration procedure until it

converges. Usually for a simulation containing 80 nodes,

three to six iteration loops are common and it takes

approximately 1.5 to 2.5 hours to obtain the results for

one bias point on the device I-V curve, using an HP 9825B.

The flow chart for the process is shown in Figure 3.2

and a sample program is given in the appendix. Figure 3.3

shows the steps needed to operate the program. An

illustration of the device configuration with mesh lines,
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Figure 3.2 Flow chart for the computer simulation.
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and the nodes numbered is shown in Figure 3.1. To store

node information, the first program in the appendix can be

used as an example. Boundary values can be defined in the

main program such that after the information for each node
is read in, its boundary value will be given automatically

before the calculation proceeds, as shown in lines 17-28

of Program 3 in the appendix. The final results of V and

N for each applied bias should be stored on disk and also

printed out in the same form as node numbering

configuration. A typical program for this is shown by

Program 7 in the appendix. Finally the I-V curve can be

plotted. In the next section, considerations needed to

set mesh sizes are discussed.

3.3.4 Mesh Spacing

In semiconductor device simulations, it is

recommended to restrict the mesh spacing, h, to be no more

than the Debye length:

S2 kT 1/2
SLDebye 2 (3.17)

-; i.e.

... 2 1/2

LDeby e > (dx)2 + (dy) 21/ h (3.18)

where dx and dy are the mesh spacing components in the x

and y directions, respectively. If this limitation is
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ignored, the solutions may represent physically

meaningless results (24). This restriction is mainly for

those cases where the Einstein relationship holds or at

least for deviations not far from it. If some nonlinear

velocity-field and/or diffusion-field curves are used, the

maximum spacing might be modified as (24)

DV (3.19)
sat sat

where Vsat is the saturation velocity, and AV is the

potential change between two adjacent nodes. Also, from

the discussion above, since the maximum spacing is

limited, the maximum device area which we can model is

also limited because of the computer memory size.

As an example to obtain some understanding about the

minimum spacing, consider the conventional SBD of Figure

2.3. Under zero bias,'from equation 2.18, Poisson's

equation becomes

-22
d4inNdexp EOT (*-V.)] l (3.20)

At any point x located in the area between the depletion

edge W and the end of the epi-layer L, p is very close to

Vo. Using Taylor's expansion in equation 3.20 yields
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d = Nd ( (3.21)
dx

Let = - Vo , so equation 3.20 can be rewritten as

= SL N (3.22)
dx e d kT

If the Newton-Raphson method is used, the truncation error

is

1 h2 d 2

dx

Assuming the mesh spacing h is no less than the Debye

length, then

2 h44 S (3.23)
dx LDebye e d .T

In other words, the error could be larger than 100 . For

two or three- dimensional structures, similar results can

be expected.

The argument given above for minimum spacing is no

longer valid inside the depletion region, since in this

case equation 3.20 becomes

2 - Nd (3.24)
dx
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instead of equation 3.21. It can be shown that the

truncation error is -kT/q, which is comparatively small

compared with the potential value 1 corresponding to it.

Therefore, wider spacing is allowed inside the depletion

region than outside it. In general, the Debye length is a

good measure for the mesh spacing. Caution should be

exercised when the mesh spacing is chosen to be larger

than Debye length.

If the Einstein relationship is not applied, then

suitable mesh spacing related to the current equation

should also be considered. Equation 3.19 is, in general,

a basic criterion for that. Generally, if the mesh

spacing is taken to satisfy both equations 3.18 and 3.19,

reasonable results should be expected. From simulation

cost considerations, it is possible to relax the spacing

1 -criterion in the interior a certain amount, but keeping a

finer mesh spacing on the boundaries.

3.4 ONE-DIMENSIONAL SIMULATION

Since the conventional Schottky diode is reasonably

well understood, it can be used for comparison with the

one-dimensional simulation results. If they are similar,

Wv then some confidence can be placed on the results of the

two-dimensional simulations. In this section we will

consider only one-dimensional cases and examine the

V details of the static solution in a conventional GaAs SBD.

-" The results shown in Figure 3.4 show the effect of varying
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the energy relaxation time. From this graph and the

results, one observes that:

1. For a fixed bias voltage, the field strength at the

Schottky contact is approximately a constant, no

matter what kind of field dependent velocity and

diffusion relationships are taken. Recall that

::! E = -

dx

This result can be understood as follows: From

equation 2.3,

( -2 2 (n-N) (3.25)

OWL SO f 9 d 4Nxig
0

Assuming, the diode length L is greater than the

depletion length W, then

d~ =0 (3.26)
L

Also, n is negligible inside the depletion region.

Bence

= 2-V (3.27)

where the right side of the equation above is a

constant for any given V.

!_ ", ", " - • -.. . . ,-", . .. "-. .-..-.-.-. """..""."".-..--.- -.. -.. .... . . - '-,_ .. . . ..., ,.. ,-
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2. For the potential curves, near the Schottky contact,

all the curves are close together; near the edge of

depletion region they deviate from one another by no

more than 2kT/q. Also they are close to the

potential curve found from the depletion

approximation.

3. For electron concentration, all the curves meet near

the edge of depletion region with electron

concentration approximately eq-al to 50 % of Nd

The total charge Q in the depletion region for each

curve, is equal to £(l) multiplied by the diode
0

area, which is the same as in the depletion

approximation.

Thus, although the detailed shape of the depletion

region differs from that predicted by the depletion

approximation, so little charge is displaced that only

* .negligible effects on the field (and hence the potential)

are observed. This displaced charge, however, will be

seen to have more significance when we wish to explain the

properties of the Gap diode in the next chapter.
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3.5 TWO-DIMENSIONAL SIMULATION

With 64 K-bytes of memory, the maximum number of nodes

available for calculations is about 81. Under this

limitation one has to suitably define the meshes over the

entire area. All the node information is stored on the

disk along with subprograms, intermediate data, etc..

Most of the computing time is used in calculating the

inverse matrices of equations 3.10 and 3.14.

If the relationship between Dn and un is close to the

Einstein relationship or Dn /n -= constant, the following

arrangement can be applied to simplify the simulation: The

current equation may be rewritten as:

SJ/q Dn expln v[n exp(- (n ) (3.28)

n n

If

n n~

dD n

n
Jn/q =D n exp(D- )Nd V* (3.30)
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respectively. Now the variables are * and i instead of n

- and p. The simulation procedures are the same as that

described previously. The advantage of this is that it is

easier to handle the boundary values this way and the

calculation is simplified. In most of the cases, it is

possible to adjust the value of 0 to be in the range of 0

to 1, in order to obtain accuracy and convergence. Also,

* the current has the same direction as VO, so one can

easily predict the current direction at each node. This

Walso helps to check if the simulation results are

physical.

In the next two chapters two simulation examples and

their results are shown.

- -

U

S-

V!
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4. GAP CONTROLLED METAL- SEMICONDUCTOR DIODE

In this chapter, a new metal-semiconductor device is

described whose I-V characteristic is controlled by a

geometric gap between adjacent Schottky metal regions.

4.1 CONFIGURATION

Consider the cross-sectional view shown in Figure 4.1.

The device represented there consists of an n-type

epitaxial layer of GaAs on an N+ conducting substrate.

Stripes of a Schottky metal are deposited either on the

surface or in notches in the epi-layer. Thus, a gap

exists between adjacent Schottky barrier regions exposing

the n-layer. Finally, an ohmic contact is established

over the entire surface, connecting the Schottky barrier

regions and the n-layer filled gap in parallel. Note that

this cell can be repeated across the surface of a wafer.

we term this configuration the Gap diode.

4.2 COMPUTER SIMULATIONS AND ANALYSIS

The parameters used in the device simulation are

listed as follows:

built-in potential = 0.72 V

doping concentration Nd = 2x1015 cm 3

energy relaxation time Te = 1013 sec

saturated Velocity V~ = 2x107 cm/sec

critical field E0 = 3.2 KV/cm

diode height 12 = 0.81 um
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N+- Substrate

Figure 4.1 Cross-section of the Gap Diode. Typical device

parameters: Nd - 2 x 10 1SCM-3;gap width 1 pm;

epi-layer thickness -1 pam ;diode area
8 x 10- a 2.
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gap width d= 0.72, 1.08, 1.44um

aspect ratio d1/11 = 8/11

Schottky height d = 0.36 um2
diode area 11 8x10 -6cm113

depletion length = 0.706 Um

The configuration is shown in Figure 4.2.

The simulation procedures and techniques have been

described in Chapter 3. Figure 4.3 shows the mesh lines

and the Schottky contacts denoted by filled dots. Note

that the entire area can be separated into two symmetrical

parts. Therefore, only the upper half is simulated. The

open circles represent the ohmic contacts and the crosses,

the noncontact boundaries. This information is entered in

Program 1 of the appendix. For example: In line 41, "I"

denotes nodes inside the semiconductor. In line 40, "B"

denotes nodes on the boundaries. Following this, line 61

asks whether the node is -on the Schottky contact or the

ohmic contact, etc. In the same program, the following

i* information is also given: the mesh spacing (lines 25-28,

57-60), the adjacent nodes (lines 51-54), geometry

structure control (lines 35, 90-111), and material

parameters including doping concentration, barrier height

and electron mobility (all in line 32). Finally all node

information is stored in a file named Cnode (lines 71-74),

and all others in Cinp (line 112) and CJ# (line 127), here

file CJ# is for current density input and output control.
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Figure 4 , 2 The significant region of Gap diode used in
sizwlaticm. diand d, are used as two control
variables.
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Boundary value assignment is set in the main program

(lines 17-26, Program 3 in the appendix).

A typical printout of the computer results is shown in

Figure 4.4. The first part is the potential value at each

node. The second is the coreesponding carrier

concentration normalized to doping concentration. The

printout has been designed to have the same appearance as

Figure 4.3. Also, the current density at each node on

both sides is given to help in understanding the current

conduction. Finally, the average current density on the

bottom line multiplied by the diode area is the total

current. The average current density values on the input

and output sides also serve as a check of the quality of

the simulation. Notice that the round-off error might

limit the precision.

From these numerical results, iso-electron

concentration and equi-potential plots can be drawn, as

shown in Figures 4.5 and 4.6. Note that the curves near

the corners of gap area adjacent to the Schottky metal are

not precise, because of the uncertainty for the boundary

values. These two figures give some insight into how the

diode works.

The principal of operation is as follows. At zero

bias the Schottky metals deplete the semiconductor both

q below the contacts themselves and in the gap between them.

By adjusting the width of the gap and the depth of the

I!
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(a)

: (b)

(C)

a

Figure 4.S Normalized electron concentration contours
for one-depletion-length Gap diode.
(a) forward bias : 0. 3 V (b) zero bias

Sc) reverse bias : -0.3 V.
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Figure 4.6 The corresponding potential contours of Figure 4.S.
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notch, the turn-on voltage for a given doping and choice

of metal can be set. For example, Figure 4.5 (b) shows

contours of equal free charge concentration, n, normalized

to the doping concentration, Nd, with no bias applied.

Note the heavily depleted regions under the Schottky

contacts and up into the gap as well. In reverse bias,

Figure 4.5 (c), the depletion regions punch through to the

cathode contact and the neck between the depletion regions

moves down from the gap. Reverse leakage current is

supported by the large number of free carriers in the gap

and in the neck between the depleted regions. In forward

bias, Figure 4.5 (a), the depletion regions are retracted

toward the metal contacts, thus exposing an ohmic channel

for charge carrier conduction. Notice that this occurs

for forward bias well below that needed to draw current

through the Schottky contacts. This can be seen in the

current density results in Figure 4.4, which also shows

the effect of current spreading at the cathode contact.

w It can be understood through the one-dimensional

simulation in Chapter 3 that the edge of the depletion

region is not so sharp as predicted by the depletion

l approximation. The displaced charge between the two

depletion regions in the gap explains why forward

conduction through the gap is much easier than through the

Schottky contact. This also explains why the reverse

current is much higher than in a conventional Schottky
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contact. However, the reverse current, in general, is

much less than the forward current, since the depletion

region spreads into the gap in reverse bias.

Current - Voltage characteristics for the Gap diode

are shown in Figure 4.7. Here the parameter is the gap

width normalized to the zero bias depletion length, Wo.

The right-most curve is the result for a conventional SBD.

Note that, as expected, the turn-on voltage can be set

from nearly the built-in potential down to nearly zero.

However, as the gap is widened the reverse current is

increased.

Figure 4.8 shows the corresponding I-V curves in log

scale. For comparison, a pure resistor which is

equ.valent to a gap diode with a very wide gap length, say

four depletion lengths or more, is presented. Note that

the Schottky diode I-V curve is a straight line in log

scale. As the gap length- increases, the curvature changes

correspondingly. When the gap width exceeds two depletion

* lengths the I-V curve will converge to that of a resistor.

Thus, the shape of the Gap diode I-V curve is also

controllable by adjusting the gap length. For different

applications, different requirements on the turn-on

voltage and I-V curvature might be preferred. Then the

optimization of the gap length, designed to satisfy a

* special application, will deserve to be studied in further

detail.
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Figure 4.9 shows predicted I-V curves using the depth

of the notch d2  as the control variable. Thinner notches

correspond to lower turn-on voltages. Note that even for

d = 0, the I-V curve is still controllable by adjusting

the gap length. This is the planar-type Gap diode.

The capacitance can be calculated from

= dQ = i (Nd-N) V+V. 2 (4.1)tdV d V 11231

Here, t and Ni are defined in Chapter 3. 111213 is the

volume of the bulk semiconductor region. The predicted

capacitance - voltage relation is shown in Figure 4.10.

Before turn-on, the capacitance of the Gap diode is lower

than that of the same size Schottky diode. This is

because most of the current goes through the gap instead

of the Schottky metal contact. When the bias voltage

approaches the turn-on voltage, which is approximately

* 0.46 volts in this case, the capacitance increases

rapidly. For the Gap diode, the current conduction can be

considered as being controlled by an equivalent potential

barrier in the gap. Its value is close to the turn-on

voltage. Recall that the capacitance is defined in

equation 2.12. When the applied bias approaches the

turn-on voltage, W becomes very small and the capacitance

increases very quickly. Note that in Figure 4.10 the SBD

q
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Figure 4.9 Predicted I-V curves using (notch thickness), d2 ,
as the parameter. All other parameters stay
the same as before.
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Figure 4.10 C-V curve of a Gap diode with a one depletion length
gap in comparison with a corresponding Schottky-
barrier diode.
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was assumed to have infinite length. However, the length

of the Gap diode is approximately one-depletion length.

Therefore, in the reverse bias case, the C-V curve of the

Gap diode approaches a low value rapidly due to

punch-through and the conduction modulation effect of the

gap.

4.3 EXPERIMENT

Experiments with this new device have been reported by

Teng et al. (37). Figure 4.11 shows the experimental I-V

characteristics for diodes with seven different gap

widths. The right hand curve is for a Schottky diode with

a 30 Pm diameter, the same as that of the Gap diodes.

Note the riking similarity to the predicted I-V curves

of Figure 4.7.

4.4 COMMENTS

1. Effort has been expended to find an analytical

expression for the I-V relation. One way to treat this

problem is to apply the potential barrier concept on the

gap region and consider the entire diode as a parallel

combination of the Schottky-barrier region, rectifing gap

region and perhaps the ohmic gap region if the gap is

* comparatively large. There is no difficulty in finding

the I-V relation for the Schottky barrier region.

However, because of the narrow gap nature, it is difficult

* to obtain an suitable expression for the current through

the gap.
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Figure 4.11 Experimental I-V characteristics for diodes with
seven different gap widths. Right hand I-V
curve is for pure Schottky -barrier diode.
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2. In the gap, since both Schottky contacts have the

same potential, therefore, right underneath the ohmic

contact there should be some depletion area on both sides.

Because of the properties of Poisson's equation, the

transitional depletion edge may stretch out to as much as

two Debye lengths. Also, because of the interaction

between the two adjacent depletion regions, the total

controllable gap length might be as much as

W + 2LDebye + 6 + 2LDebye + WO =3 Wo  (4.2)

where 6 is of the order of one Debye length. Note that

1/2[V
Wo/LDebye = [-o] 5.27 (4.3)

if Vo - 0.72 V.

This is close to what is observed experimentally.

3. We have demonstrated a new device principle: It is

* mpossible to produce depletion of carriers under an ohmic

contact region. By this means, a large range of turn-on

voltages, from that of the pure Schottky to nearly zero

volts, can be obtained. This observation can be applied

* to other two- or three- terminal structures which may

yield microwave and mm-wave devices with new and desirable

U properties.

Vq
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5. GEOMETRICALLY CONTROLLED ANTISYMMTRIC

METAL-SEMICONDUCTOR DIODE

In this chapter the design of an antisymmetric diode

is reported. The computer results show that the shape of

its I-V curve can be adjusted as well as its turn-on

voltage. This new device has possible high frequency

applications.

In 1974 Schneider and Snell (48) and Cohn, Degenford

and Newman (38) reported simultaneously a new mixer, named

the antiparallel mixer diode pair. In this device,

because of its antisymmetric configuration (See Figure 5.1

(b)), the I-V curve is symmetrical with respect to the

origin. If a local oscillator sinusoidal voltage is

applied to this device, there will be two switching cycles

for each cycle of the local oscillator voltage. This is

double that of the single diode mixer case. It has been

shown (38) that the total current of the antiparallel

diode pair contains only frequencies mf + nf for which

m + n is an odd integer; f and f are the frequencies of

the local oscillator and the signal, respectively. On the

other hand, the single diode mixer results in a diode

current having all frequency components. This

*& characteristic property suggests that such a configuration

has the advantage as a subharmonic mixer, because it can
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be pumped at half of the frequency required for the local

oscillator in a single diode mixer.

The natural suppression of the fundamental and other

mixing products is lessened due to the slightly

nonidentical electrical properties of the two diodes for

the antiparallel diode mixer pair, such as differences in

saturation currents and I-V curvatures (38). Furthermore,

although the diodes may be identical, since they are

physically separated their circuit environments may not be

identical. Therefore, the overall electrical

characteristics of the antiparallel mixer diode pair may

not be symmetric. This also results in the incomplete

suppression of undesired mixing terms. So the conclusion

is that one needs good electrical symmetry as well as

mechanical symmetry for proper device operation (49). Due

to practical considerations, this is especially hard to

accomplish at mm-wavelengths (50).

Also mentioned by Cohn et al. (38), the suppressed

current components circulate within the loop formed by the

two diodes. According to Kerr (49), the magnitude of the

loop inductance, as seen by currents circulating through

the two diodes, strongly affects the subharmonically

pumped mixer performance, such as conversion loss and

noise figure in mm-wave applications. Therefore,

adjusting this loop inductance to optimize the performance

is an important topic to be considered.
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In 1978, Cardiasmenos reported a successful technique

to fabricate such a device with a 5-dB DSB noise figure at

94 GHz (50). These planar type devices are used in

*suspended stripline substrates. Microprocessor-controlled

- .machinery replaces the traditional trial and error

fabricating and trimming work and achieves highly

*reproducible results. The entire fabrication procedure is

very complicated and this is believed to be the first

successful report on the mass production of the

antiparallel mixer diode pair.

In order to explore alternative means of realizing the

*desired I-V characteristics, we consider an innovative

design for such device in the following:

5.1 CONFIGURATION AND PHYSICAL ANALYSIS

Consider the geometry of Figure 5.1 (a). A Schottky

metal, such as A. is deposited over a portion of an N+

* :substrate, and N-doped GaAs layer is grown around and over

it. After the desired diode thickness is obtained a

second Schottky metal is deposited over the antisymmetric

side and finally an ohmic contact is applied to the entire

upper surface, completing the device. We call this device

the antisymmetric diode. The equivalent circuit of the

device is shown in Figure 5.1 (b) which is the

antiparallel diode pair. The technology needed to

w fabricate such a device is the same as that used in the

permeable base transistor (51).
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(a) Antisymmetric diode configuration.

(b) Equivalent circuit- antiparallel (back-to-back)
diode pair.

Figure S.1 Antisymmetric diode and its equivalent circuit.
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Such a structure should be highly symmetric and

* uniform so that well balanced I-V curves should be

obtained. Furthermore, the millimeter wave parasitic

circuit elements are all external to the new diode so that

circuit balance should be improved and impedance matching

simplified. In addition to the mechanical and electrical

advantages of this structure it can be shown that, with

the barrier height unchanged, the turn-on voltage can be

lowered to a suitable value.

5.2 COMPUTER SIMULATIONS AND ANALYSIS

Using the techniques described in Chapter 3, the

computer simulation for this configuration has been

carried out for a device with the parameters given below:

doping concentration Nd = lxl017 cm
-3

built-in potential Vo = 0.72 V

diode height ix = 0.1064 um

overlap length 1 = 0.0266, 0.02, 0.0133 Pm

diode area 1z 1x10 cm
2 -1 -1

* electron mobility = 5000 cm V sec

overlap ratio lo/ly = 1/5

0depletion length wo = 0.0998 i'm

* The configuration used in simulation is shown in Figure

5.2. Here, Nd is the doping concentration for the bulk

semiconductor, and lX is the thickness of the bulk region.

li The two Schottky metals overlap by 10. In order to

simplify the simulation, the Einstein relationship is
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Figure 5.2 The active region of the antisymmetric diode used
in the simulation. Only the x-y cross-section is
considered.
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assumed. Because of the antisymmetric geometry, it is

necessary to analyze only one polarity of applied bias

voltage. In the z-direction the diode structure is

assumed uniform, therefore only a two-dimensional

simulation is performed.

Figures 5.3 and 5.4 show the carrier concentration and

potential contours, respectively, for a typical

antisymmetric diode. With zero bias, i.e. graph (b) of

Figures 5.3 and 5.4, the geometric symmetry of the diode

is reflected in the contours. The electron concentration

is normalized to the doping concentration Nd. Areas where

the contour values are less than n/Nd = 0.001 are

considered to be depleted. The area next to each Schottky

metal contact is depleted. This phenomenon is similar to

that observed in the one-dimensional case. Assuming that

the length of the depletion region surrounding each metal

contact is approximately equal to one depletion length, if

the thickness of the bulk region, i.e. the distance

between the two Schottky metal contacts, is of the order

of two depletion lengths, then it is expected that there

is no undepleted channel between the two ohmic contacts

under zero bias (See Figure 5.3 (b)). When a small bias

is applied (Figure 5.3 (a)), since the left hand Schottky

contact is forward biased, the corresponding depletion

wregion is retracted toward the metal. At the same time,

the other Schottky contact is reverse biased, and so the
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Figure 5.3 Typical electron concentration contours for the
antisymetric diode. (a) V - 0015 volt, n
increases in the central region (b) V - 0, the
contours are symmetrical (c) V - 0.30 volt,
electron conduction through the central region

*turns the diode'on.

4i.
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corresponding depletion region extends further out into

the bulk material. Comparing this with the zero bias

case, it is observed that in the central region, the

electron concentrations increase. This phenomenon is more

clearly observed in Figure 5.3 (c) which shows an exposed

ohmic channel for electron conduction. In fact, the diode

is already turned on. Notice that this occurs for a bias

voltage well below that needed to tucn on the SBD.

Instead of carrier conduction through the metal contact,

this new conductivity modulation device provides a voltage

variable ohmic channel for conduction. It will be shown

later that the I-V relation is exponential for both

polarities of applied bias.

Figure 5.4 shows the corresponding potential contours

for reference. Similar to the Gap diode, because of the

uncertainty of boundary values, it is difficult to

accurately describe areas where the Schottky metal

contacts meet the ohmic ones. Away from these areas,

* along the metal contacts, the potential becomes more and

more uniform. From these contours, the electric field can

be found. In order to obtain an accurate picture of the

current density distribution not only the electron conto.:

plot but also the potential contour plot must be !an.'

into account (See equation 3.2).

Figure 5.5 shows I-V curves for different -v

the Schottky metal. Also shown, for compqar.s
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Figure 5.5 Computer results of I-V curves with the overlap,
1 , as control parameter. For comparison, a
carresponding back-to-back diode pair I-V curve

4 is also shown.
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I-V curve for a conventional back-to-back SBD pair with V.

- 0.72 V. This graph shows that the turn-on voltage

responds sensitively to the change of the overlap. More

overlap results in a higher turn-on voltage. Figure 5.6

shows the corresponding curves on a log scale. Straight

lines in this graph indicate that the I-V curve of the

device is exponential, independent of overlap. Moreover,

the slopes differ from the back-to-back SBD pair. With

the thickness of epi-layer as a parameter, the resulting

I-V curves are shown in Figure 5.7. For a thin device,

the channel is tightened up and electron conduction is

restricted, resulting in higher turn-on voltage. The

corresponding I-V curves in log scale are shown in Figure

5.8. Again, all are exponential :;ut with different

slopes.

Figure 5.9 compares calculated capacitances for a

typical antisymetric -diode and a corresponding

antiparallel diode pair. The capacitance af the

antisynmetric diode is much lower, since the current

conduction is due to conductivity modulation rather than

to the Schottky rectifying effect.

5.3 CONCLUSIONS AND COMMENTS

According to the simulation it can be concluded that,

for the antisymmetric diode,

1. The I-V curve is antisymmetric and exponential.

2. The turn-on voltage is adjustable by two parameters:
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(a) the overlap of Schottky metals.

(b) the thickness of the bulk region.

3. Low capacitance can be expected. Other properties,

such as temperature sensitivity and burn-out

behavior, should be similar to those experienced

with the Gap diode.

From above, the new diode should be useful as a

subharmonic mixer and/or limiter.

From the standpoint of design, the thickness of the

bulk semiconductor should be no more than 3 depletion

lengths. The reasoning is similar to the gap length

restriction for Gap diode. Furthermore, the overlap of
Schottky metals should not be taken to be too large, since

this will produce a low shunt resistance, and the

resulting device will be a resistor. On the other hand,

too narrow a channel will increase the turn-on voltage

and/or capacitance, and the advantage of this new device

will be lost.

-:1

-i
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6. CONCLUSIONS

The purpose of this work is to develop a

two-dimensional simulation program capable of modeling the

static electrical characteristics of semiconductor devices

with complex geometries and made of arbitrary material.

The simulation is intended for operation on small

(desktop) computers. Another purpose is to use the

simulation in the investigation of some new microwave

device designs.

6.1 COMPUTER SIMULATIONS

The program that has been developed has the following

properties:

6.1.1 User-Oriented program

Information is entered for each node of a mesh which

describes the device to be analyzed by the finite

difference method. The information to be entered includes

the neighborhood node identification numbers, the

distances between nodes, and the status of the node (i.e.

is it on a boundary, in the interior of the bulk, or on a

symmetry line, is it Schottky contact or ohmic contact, is

it forward or reverse bias, etc.). The carrier

concentration, the potential, and the current density at

each node interior to the device can be found as well as

the total current for each applied bias voltage.
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6.1.2 Modified Decoupled Method

Because of the limited memory available in a small

computer, efficient use of this memory is a primary

concern. A modified decoupled solution method has been

developed using a two stage-iteration scheme which not

only saves three quarters of the memory but also yields a

converged solution of similar quality to that obtained

from the traditional coupled method.

6.1.3 Limitations

The maximum number of nodes available for simulation

is limited by the computer memory size. Also, the allowed

maximum mesh spacing is dominated by the Debye length.

Most of the time consumed in obtaining a solution is used

in solving the inverse matrix. Using a small computer, it

might take many hours to obtain one I-V curve. However,

the trade-off is the low cost of simulation. Since, for a

given barrier height, the ratio between depletion length

and Debye length is a constant, from the argument above,

the total area which can be simulated is limited by the

computer memory size. However, usually the area needed

for two-dimensional modeling is limited; other parts of

the device can be treated by a one-dimensional

approximation. Hence it can be concluded that by suitable

manipulation, it is possible for the designer to simulate

a variety of semiconductor device structures with this

program.
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,' 6.1.4 Finite Difference And Finite Element Methods

The finite difference method is simple and reliable in

programing, and much more effort can be applied to the

device simulation itself instead of to debugging the

program. Higher order finite element methods might be

used to improve the results after a basic understanding of

the device under consideration has been made using the

finite difference method.

6.2 APPLICATIONS IN TWO-DIMESIONAL DEVICES

By changing the geometry of the metal-semiconductor

diode, we have shown that it is possible to construct a

family of new devices which can be used in microwave and

an-wave applications. Pi emd on the simulations, some of

the characteristics v", two new devices have been

predicted.

6.3 GAP CONTROLLED IETAL-SEMNDUCTOR DIODE

In this new design, a simple and effective means by

which to control the turn-on voltage of a semiconductor

diode has been found. This new contact technique permits

the use of conventional Schottky metals and any

-' semiconductor material. This design may also improve the

temperature behavior and burn-out rating of these diodes.

Furthermore, in fabrication, this diode only takes a few

more steps than the conventional SBD, so that the added

cost may not be significant. An actual device has been

lei demonstrated in GaAs '37).

'p. : ; .-~ i, ' ' o . ' ' .., , . .' . " .- . ' - .. - . - ., i - , " -.' , " ' ' ," , " ' ' " .. ' _ "
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6.4 ANTISYMMETRIC METAL-SEMICONDUCTOR DIODE

Another new structure, the antisymmetric diode, was

proposed for microwave and/or am-wave applications. The

potential advantages of this device include adjustable

turn-on voltage, balance in both polarities, improved

burn-out rating, low capacitance and low temperature

sensitivity as a mixer or limiter.

6.5 PROBLEMS TO BE SOLVED

Two new types of microwave and mm-wave diodes have

been modeled with the technique described in the study

presented here. Other configurations also can be

investigated. For example, a three terminal device is

possible in which the gap technique is used to obtain a

vertical FET. A sketch of one such design is shown in

Figure 6.1. This is a planar-type vertical FET.

C'r. aring this configuration with that of the Gap diode,

as shown in Figure 4.1, the only difference is that on the

top portion of this device the Schottky metals are

separately contacted to become the gates (G). The drain

(D) is formed by an ohmic contact. Apparently, the

gate-to-gate length and the epi-layer thickness depend on

V.. and can be calculated if the gap technique is

applied. Because the drain-source distance is much less

than for a conventional FET, good performance in high

speed and/or high frequency applications can be expected

(37,51).
.5i

°.

. .
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Figure 6. 1 Cross-section of planar-type vertical FET.
The gate (G), drain (D) and source (S) are of

wSchottky) cotc,ohmic contact and N+ substrate
materials respectively. Gates are reverse biased
with respect to the drain (VD< 0). The gate-to-
gate length and epi-layer thickness depend on VGD.
The gap technique can be applied to decide the
device parameters (refer to Figure 4.1)

I w
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In order to improve the simulation work, other

parameters such as temperature should be considered.

Refinements of the V(E) and D(E) relations used also would

" be helpful in obtaining more reliable results.

Furthermore, the properties of the contacts should be

.* emphasized since this is an important factor for achieving

accurate predictions of device behavior.

With the simple and low cost technique presented here,

the simulation of semiconductor device static

characteristics is accessible to laboratories with even

modest computing capability. Simulations are a powerful

tool to aid in the understanding of complex device

phenomena. The knowledge so obtained can lead to

improvements in existing devices and the exploration of

new device concepts.

*i Finally in this study, it is assumed that the third

- * dimension of the device under investigation is uniform.

However, for some small device in which the third

dimension is of the order of the other two dimensions, or

for which more accurate results are required, it may

become necessary to develop three dimensional analysis

with a microcomputer.
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Ptrrm 4 s Coefficient Katrz for Poisson's Equation
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Prograu S I Jacabian Matrix
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Program 6 1 Coefficient Matrix for Current Equation
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